Giveny=xx
Applying log to both sides,
logy=logxx=xlogx since logam=mloga
Differentiating both sides w.r.t x
d(logy)dx=d(xlogx)dx
⇒1ydydx=xd(logx)dx+logxdxdx
⇒1ydydx=xd(logx)dx+logx
⇒dydx=xy×1x+ylogx
⇒dydx=y+ylogx
⇒dydx=y(1+logx) where y=xx
⇒dydx=xx(1+logx)
∴dydx=xx(1+logx)