The given function is
xy+yx=1
Let xy=u and yx=v
Then, the function becomes u+v=1
dudx+dvdx=0 ...(1)
u=xy
⇒logu=log(xy)
⇒logu=ylogx
Differentiating both sides with respect to x, we obtain
⇒1ududx=logxdydx+y.ddx(logx)
⇒dudx=xy(logxdydx+yx) ...(2)
v=yx
⇒logv=log(yx)
⇒logv=xlogy
Differentiating both sides with respect to x, we obtain
1vdvdx=logy.ddx(x)+x.ddx(logy)
⇒dvdx=v(logy.1+x.1y.dydx)
⇒dvdx=yx(logy+xy.dydx) ...(3)
From (1), (2) and (3) we obtain
xy(logxdydx+yx)+yx(logy+xy.dydx)=0
⇒(xylogx+xyx−1)dydx=−(yxy−1+yxlogy)
∴dydx=−yxy−1+yxlogyxylogx+xyx−1