wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx while:
xy+yx=ab

Open in App
Solution

Let u=xy and v=yx
u+v=ab
dudx+dvdx=ddx(ab)=0 since differential of a constant is 0
dudx+dvdx=0
u=xylogu=ylogx
1ududx=yddx(logx)+logxddx(y)
1ududx=yx+logxdydx
dudx=u(yx+logxdydx)
v=yxlogv=xlogy
1vdvdx=xddx(logy)+logyddx(x)
1vdvdx=xydydx+logy
dvdx=v(xydydx+logy)
dydx=dudx+dvdx
dydx=u(yx+logxdydx)+v(xydydx+logy)
dydx=uyx+ulogxdydx+vxydydx+vlogy
(1ulogxvxy)dydx=uyx+vlogy
dydx=uyx+vlogy1ulogxvxy
dydx=xyyx+yxlogy1xylogxyxxy where u=xy and v=yx
or dydx=yxy1+yxlogy1xylogxxyx1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon