Let u=xy and v=yx
⇒u+v=ab
⇒dudx+dvdx=ddx(ab)=0 since differential of a constant is 0
⇒dudx+dvdx=0
u=xy⇒logu=ylogx
⇒1ududx=yddx(logx)+logxddx(y)
⇒1ududx=yx+logxdydx
⇒dudx=u(yx+logxdydx)
v=yx⇒logv=xlogy
⇒1vdvdx=xddx(logy)+logyddx(x)
⇒1vdvdx=xydydx+logy
⇒dvdx=v(xydydx+logy)
∴dydx=dudx+dvdx
⇒dydx=u(yx+logxdydx)+v(xydydx+logy)
⇒dydx=uyx+ulogxdydx+vxydydx+vlogy
⇒(1−ulogx−vxy)dydx=uyx+vlogy
⇒dydx=uyx+vlogy1−ulogx−vxy
∴dydx=xyyx+yxlogy1−xylogx−yxxy where u=xy and v=yx
or dydx=yxy−1+yxlogy1−xylogx−xyx−1