We have, sin2y+cosxy=k Differentiating both sides with respect to x, we obtain ⇒ddx(sin2y)+ddx(cosxy)=d(π)dx=0 .....(1) Using chain rule, we obtain ddx(sin2y)=2sinyddx(siny)=2sinycosydydx...... (2) and
ddx(cosxy)=−sinxyddx(xy)=−sinxy[yddx(x)+xdydx] =−sinxy[y.1+xdydx]=−ysinxy−xsinxydydx.....(3) From (1), (2) and (3), we obtain 2sinycosydydx−ysinxy−xsinxydydx=0 ⇒(2sinycosy−xsinxy)dydx=ysinxy ⇒(sin2y−xsinxy)dydx=ysinxy ∴dydx=ysinxysin2y−xsinxy