wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx of sin2y+cosxy=k

Open in App
Solution

We have, sin2y+cosxy=k
Differentiating both sides with respect to x, we obtain
ddx(sin2y)+ddx(cosxy)=d(π)dx=0 .....(1)
Using chain rule, we obtain
ddx(sin2y)=2sinyddx(siny)=2sinycosydydx...... (2)
and
ddx(cosxy)=sinxyddx(xy)=sinxy[yddx(x)+xdydx]
=sinxy[y.1+xdydx]=ysinxyxsinxydydx.....(3)
From (1), (2) and (3), we obtain
2sinycosydydxysinxyxsinxydydx=0
(2sinycosyxsinxy)dydx=ysinxy
(sin2yxsinxy)dydx=ysinxy
dydx=ysinxysin2yxsinxy

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon