∫sinxsin4xdx=∫sinx2sin2xcos2x=∫sinx4sinxcosxcos2xdx∫dx4cosxcos2x=∫dx4cosx(1−2sin2x)
If we multiply by cosx in num. dena and convert cos2x if 1−sin2x and then let sinx and then proceed with partial fraction.
∫cosxdx4cos2x(1−2sin2x)=∫cosxdx4(1−sin2x)(1−2sin2x)
Let sinx=t⇒cosxdx=dt
∫dt4(1−t2)(1−2t2)=∫dt4(1−t)(1+t)(1−2t2)
from this use of only its complicated use of many variable
two variable when we
put t2=α
1(1−t2)(1−2t2)→putt2=α⇒1(1−α)(1−2α)
1(1−α)(1−2α)=A1−α+β1−2α=A(1−2α)+B(1−α)(1−α)(1−2α)
on comparison
1=A(1−2α)+B(1−α)
put α=1
$1=A