wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Findsinxsin4xdx

Open in App
Solution

sinxsin4xdx=sinx2sin2xcos2x=sinx4sinxcosxcos2xdx
dx4cosxcos2x=dx4cosx(12sin2x)
If we multiply by cosx in num. dena and convert cos2x if 1sin2x and then let sinx and then proceed with partial fraction.
cosxdx4cos2x(12sin2x)=cosxdx4(1sin2x)(12sin2x)
Let sinx=tcosxdx=dt
dt4(1t2)(12t2)=dt4(1t)(1+t)(12t2)
from this use of only its complicated use of many variable
two variable when we
put t2=α

1(1t2)(12t2)putt2=α1(1α)(12α)
1(1α)(12α)=A1α+β12α=A(12α)+B(1α)(1α)(12α)
on comparison
1=A(12α)+B(1α)
put α=1
$1=A

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon