∫√tanxdxLet t2=tanx
2tdt=sec2xdx
dx=2tdt1+t4
∫2t21+t4dt=∫t2+11+t4dt∫t2−11+t4dt
=Divide by t2 both integrals
∫1+1t2t2+1t2dt+∫1−1t2t2+1t2dt
t−1t=u1+1t2dt=du
t+1t=v1−1t2dt=dv
∫du2+42+dvv2−2=1√2tan−1(4√2)+12√2logv−√2v+√2+c
Putting values of u,v then t.
=1√2tan−1[tan−1(√2tanx)]+1√2logtanx+1−√2tanxtanx+1+√2tanx+c