wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

find domain and range for y=√(9x-x^2 )

Open in App
Solution

F(x) =
Clearly f(x) assumes real values , if
9 - x² ≥ 0
-x² + 9 ≥ 0
-( x² - 9 ≥ 0)
x² - 9 ≤ 0
(x-3)(x+3) ≤ 0
x {-3,3}
domain f(x) = {-3,3}
range,
let y = f(x)
y =
y² = 9 -x²
x² = 9-y²
x =
clearly , x will take real values , if
9 - y² ≥ 0
y² - 9 ≤ 0
(y-3)(y+3)≤ 0
-3≤y≤3
y {-3,3}
y = ≥ 0 for all x {-3,3}
y {0,3} for all x {-3,3}
hence, range (f) = {0,3}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon