Find dydx, If y=logsin3x.
Compute the required derivative:
Given: y=logsin3x.
Differentiating with respect to x, we get,
⇒dydx=1sin3x×3cos3x∵ddxlogfx=1fxddxfx⇒dydx=3cos3xsin3x⇒dydx=3cot3x
Hence , dydx=3cot3x is the required answer.
Find dydx, if x+y=sin(x−y)