Find dydx if sin2x+cos2y=1.
Compute the required derivative:
⇒sin2x+cos2y=1 (Given)
Differentiating both sides with respect tox, we get,
Formula ∵ddxsin2x=2sinxddxsinx=2sinx·cosx,ddx(constant)=0
⇒ dsin2x+cos2ydx=0
⇒2sinxcosx+2cosy-sinydydx=0
⇒ dydx=2sinxcosx2sinycosy
⇒dydx=sin2xsin2y
Hence, the correct answer is sin2xsin2y.