wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx, when

x=eθ θ+1θ and y=e-θ θ-1θ

Open in App
Solution

We have, x=eθθ+1θ
Differentiating it with respect to θ,
dxdθ=eθddθθ+1θ+θ+1θddθeθ using product ruledxdθ=eθ1-1θ2+θ2+1θeθdxdθ=eθ1-1θ2+θ2+1θdxdθ=eθθ2-1+θ3+θθ2dxdθ=eθθ3+θ2+θ-1θ2 ...iand, y=eθθ-1θ
Differentiating it with respect to θ using chain rule,

dydθ=e-θddθθ-1θ+θ-1θddθe-θ using product ruledydθ=e-θ1+1θ2+θ-1θeθddθ-θdydθ=e-θ1+1θ2+θ-1θe-θ-1dydθ=e-θ1+1θ2-θ+1θdydθ=e-θθ2+1-θ3+θθ2dydθ=e-θ-θ3+θ2+θ+1θ2 ...iiDividing equation ii by i,dydθdxdθ=e-θθ2-θ3+θ+1θ2×θ2eθθ3+θ2+θ-1 =e-2θθ2-θ3+θ+1θ3+θ2+θ-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon