wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx

y=tan xcot x+cot xtan x

Open in App
Solution

We have, y=tanxcotx+cotxtanx y=elogtanxcotx+elogcotxtanxy=ecotx logtanx+etanx logcotx
Differentiating with respect to x using chain rule and product rule,
dydx=ddxecotx logtanx+ddxetanx logcotx =ecotx logtanxddxcotx logtanx+etanx logcotxddxtanx logcotx =elogtanxcotxcotxddxlog tanx+log tanxddxcotx+elogcotxtanxtanxddxlog cotx+logcotxddxtanx =tanxcotxcotx×1tanxddxtanx+log tanx-cosec2x+cotxtanxtanx×1cotxddxcotx+log cotxsec2x =tanxcotxcosec2xsec2xsec2x-cosec2x log tanx+cotxtanxsec2xcosec2x-cosec2x+sec2x log cotx =tanxcotxcosec2x-cosec2x log tanx+cotxtanxsec2x log cotx-sec2x =tanxcotxcosec2x1-log tanx+cotxtanxsec2x log cotx-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon