We have,
(x2+y2)2=xy
On differentiating both sides with respect to x, we have
2(x2+y2)×[2x+2ydydx]=y+xdydx
4x(x2+y2)+4y(x2+y2)dydx=y+xdydx
4x(x2+y2)−y=xdydx−4y(x2+y2)dydx
4x(x2+y2)−y=[x−4y(x2+y2)]dydx
dydx=4x(x2+y2)−yx−4y(x2+y2)
Hence, this is the answer.