wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find (x2+1)ex(x+1)2dx.

Open in App
Solution

Let I=(x2+1)ex(x+1)2dx
Substitute u=x+1du=dx,x2=(u1)2
I=e1((u1)2+1)euu2du

=e1((u1)2euu2)du+euu2du

=e1((u22u+1)2euu2)du+euu2du

=e1(eu2euu+euu2)du+euu2du

=e1(eu2euu+2euu2)du
I=e1(eu2Ei(u)+2euu2du) ........ (2)
To evaluate euu2du
Let f=eu and g=1u2f=eu and g=1u
Using integration byparts
euu2du=euueuudu
=euu+Ei(u)
From (2),
I=e1(eu2Ei(u)2euu+2Ei(u))
=eu12eu1u
I=ex2exx+1+C
I=ex(x1)x+1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon