wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find x4+1x(x2+1)2dx.

Open in App
Solution

Let I=x4+1x(x2+1)2dx=x4+1+2x22x2x(x2+1)2dx=(x2+1)22x2x(x2+1)2
I=(x2+1)2x(x2+1)2dx2x2x(x2+1)2dxI=1xdx2x(x2+1)2dx
In second integral, put x2+1=y2xdx=dyI=log|x|dyy2=log|x|+1y+C
Thus, I=log|x|+1x2+1+C.
Alternative: I=x4+1x(x2+1)2dx=(x4+1)xx2(x2+1)2dx [Put x2=txdx=dt2]
I=12t2+1t(t+1)2dt
Consider t2+1t(t+1)2=At+Bt+1+C(t+1)2t2+1=A(t+1)2+Bt(t+1)+Ct
On comparing the coefficients of like terms both sides, we get: A=1, B=0, C=-2
I=12{1t+0t+12(t+1)2}dt=12{log|t|+2t+1}+C=12{log|x2|+2x2+1}+C
Therefore,I=log|x|+1x2+1+C.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon