Let I=∫x4+1x(x2+1)2dx=∫x4+1+2x2−2x2x(x2+1)2dx=∫(x2+1)2−2x2x(x2+1)2
⇒I=∫(x2+1)2x(x2+1)2dx−∫2x2x(x2+1)2dx⇒I=∫1xdx−∫2x(x2+1)2dx
In second integral, put x2+1=y⇒2xdx=dy∴I=log|x|−∫dyy2=log|x|+1y+C
Thus, I=log|x|+1x2+1+C.
Alternative: I=∫x4+1x(x2+1)2dx=∫(x4+1)xx2(x2+1)2dx [Put x2=t⇒xdx=dt2]
⇒I=12∫t2+1t(t+1)2dt
Consider t2+1t(t+1)2=At+Bt+1+C(t+1)2⇒t2+1=A(t+1)2+Bt(t+1)+Ct
On comparing the coefficients of like terms both sides, we get: A=1, B=0, C=-2
∴I=12∫{1t+0t+1−2(t+1)2}dt=12{log|t|+2t+1}+C=12{log|x2|+2x2+1}+C
Therefore,I=log|x|+1x2+1+C.