∫[√cotx+√tanx]dx⇒∫[√cotx+1√cotx]dx⇒∫[cotx+1√cotx]dx⇒∫[√tanx(cotx+1)]dxLettanx=t2diff.w.r.t.x,Sec2x=2tdtdx(1+tan2x)=2t.dtdx⇒1+(t2)2=2t.dtdx⇒(1+t4)dx=2tdt⇒dx=2t1+t4dtPutting the value of t & dt, we get
∫[√t2(cotx+1)]dx⇒∫[√t2(1tanx+1)]dx⇒∫t[1t2+12]dx⇒∫t[1+t2t2]dx=∫t(1+t2t2)×2t1+t2.dt⇒∫2(1+t2)1+t4dtDivideN&Dbyt2⇒2∫1t2+11t2+t2dt[Adding&subtracting2inDenominator]⇒2∫1+1t2(t−1e)+(√2)2dtlett−1t=ydiff.weget1+1t2=dydt⇒dt=dy(1+1t2)Puttingthevalueof(t−1t)&dt,weget⇒2∫1+1t2y2+(√2)2dt⇒2∫1y2+(√2)2dy∫1x2+a2dx=1atan−1xa+c1⇒2∫(1√2tan−1y√2+c1)⇒2√2tan−1y√2+2c1⇒√2tan−11t−t√2+2c1⇒√2tan−1x(tanx−1√2√tanx)+c[usingt=√tanx]⇒√2tan−1(tanx−1√2tanx)+c