wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find [cotx+tanx]dx

Open in App
Solution

[cotx+tanx]dx[cotx+1cotx]dx[cotx+1cotx]dx[tanx(cotx+1)]dxLettanx=t2diff.w.r.t.x,Sec2x=2tdtdx(1+tan2x)=2t.dtdx1+(t2)2=2t.dtdx(1+t4)dx=2tdtdx=2t1+t4dt
Putting the value of t & dt, we get
[t2(cotx+1)]dx[t2(1tanx+1)]dxt[1t2+12]dxt[1+t2t2]dx=t(1+t2t2)×2t1+t2.dt2(1+t2)1+t4dtDivideN&Dbyt221t2+11t2+t2dt[Adding&subtracting2inDenominator]21+1t2(t1e)+(2)2dtlett1t=ydiff.weget1+1t2=dydtdt=dy(1+1t2)Puttingthevalueof(t1t)&dt,weget21+1t2y2+(2)2dt21y2+(2)2dy1x2+a2dx=1atan1xa+c12(12tan1y2+c1)22tan1y2+2c12tan11tt2+2c12tan1x(tanx12tanx)+c[usingt=tanx]2tan1(tanx12tanx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon