Find limx→−52[x].
limx→52[x]
LHL:limx→5−2[x]
Let x=52−h, \
⇒h=52−x
as x→5−2⇒x<52slightly
⇒52−x>0⇒h>0
⇒h→0+
limh→0[52−h]=2
RHL:limx→5+2[x]
Let x=52+h,
⇒h=x−52
as x→5+2⇒x>52slightly
⇒x−52>0⇒h>0
⇒h→0+
limh→0+[52+h]=2
We know:
Since, =limx→5−2[x]=limx→5+2[x]
∴limx→52[x]=2