wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find π/20sin7xdx

Open in App
Solution

Let I=sin7xdx
I=sinxsin6xdx
Integrating by parts, we have
I=cosx(sin6x)(cosx)6sin5xcosxdx
I=sin6xcosx+6cos2xsin5xdx
I=sin6xcosx+6sin5x(1sin2x)dx
I=sin6xcosx+6sin5xdx6sin7xdx
I+6I=sin6xcosx+6sin5xdx
7I=sin6xcosx+6sin5xdx.....(1)
Now, let
I=sin5xdx
I=sinxsin4xdx
Integrating by parts, we have
I=cosx(sin4x)(cosx)4sin3xcosxdx
I=sin4xcosx+4cos2xsin3xdx
I=sin4xcosx+4sin3x(1sin2x)dx
I=sin6xcosx+4sin3xdx4sin5xdx
I+4I=sin6xcosx+4sin3xdx
5I=sin6xcosx+4sin3xdx
I=15sin6xcosx+45sin3xdx
Now, again let
I′′=sin3xdx
I′′=sinx(1cos2x)dx
I′′=sinxsinxcos2xdx
I′′=sinxdxsinxcos2xdx
I′′=cosx+cos3x3
Now substituting the value of I and I′′ in equation (1), we get
7I=sin6xcosx+6[15sin6xcosx+45(cosx+cos3x3)]
I=17sin6xcosx635sin6xcosx2435cosx+24105cos3x
Therefore,
π20sin7xdx=[17sin6xcosx635sin6xcosx2435cosx+24105cos3x]π20
=(17sin6π2cosx635sin6π2cosπ22435cosπ2+24105cos3π2)
(17sin60cos0635sin60cos02435cos0+24105cos30)
=2472105
=48105=1635
Thus π20sin7xdx=1635

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon