Let I=∫sin7xdx
⇒I=∫sinx⋅sin6xdx
Integrating by parts, we have
I=−cosx(sin6x)−∫(−cosx)6sin5xcosxdx
I=−sin6xcosx+6∫cos2xsin5xdx
I=−sin6xcosx+6∫sin5x(1−sin2x)dx
I=−sin6xcosx+6∫sin5xdx−6∫sin7xdx
I+6I=−sin6xcosx+6∫sin5xdx
7I=−sin6xcosx+6∫sin5xdx.....(1)
Now, let
I′=∫sin5xdx
⇒I′=∫sinx⋅sin4xdx
Integrating by parts, we have
I′=−cosx(sin4x)−∫(−cosx)4sin3xcosxdx
I′=−sin4xcosx+4∫cos2xsin3xdx
I′=−sin4xcosx+4∫sin3x(1−sin2x)dx
I′=−sin6xcosx+4∫sin3xdx−4∫sin5xdx
I′+4I′=−sin6xcosx+4∫sin3xdx
5I′=−sin6xcosx+4∫sin3xdx
⇒I′=−15sin6xcosx+45∫sin3xdx
Now, again let
I′′=∫sin3xdx
⇒I′′=∫sinx(1−cos2x)dx
I′′=∫sinx−sinxcos2xdx
⇒I′′=∫sinxdx−∫sinxcos2xdx
⇒I′′=−cosx+cos3x3
Now substituting the value of I′ and I′′ in equation (1), we get
7I=−sin6xcosx+6[−15sin6xcosx+45(−cosx+cos3x3)]
I=−17sin6xcosx−635sin6xcosx−2435cosx+24105cos3x
Therefore,
∫π20sin7xdx=[−17sin6xcosx−635sin6xcosx−2435cosx+24105cos3x]π20
=(−17sin6π2cosx−635sin6π2cosπ2−2435cosπ2+24105cos3π2)
−(−17sin60cos0−635sin60cos0−2435cos0+24105cos30)
=24−72105
=−48105=−1635
Thus ∫π20sin7xdx=−1635