Let x+iy=√9+40i
(x−iy)=9+40i
∴ x2+y2=9 (i)
and xy=20 (ii)
squaring (i) and adding with 4 times the square of (ii)
we get x4+y4−2x2y2+4x2y2=81+1600
⇒ (x2+y2)2=1681
⇒ x2+y2=41 (iii)
from (i)+(iii) we get x2=25
⇒ x=±5
and y2=16
⇒ y=±4
from equation (ii) we can see that
x & y are of same sign
∴ x+iy=(5+4i) or −(5+4i)
∴ sq. roots of 9+40i=±(5+4i)
±(5+4i)