Find the antiderivative of tan2(x)dx.
Compute the antiderivative:
We can find the antiderivative as,
∫tan2(x)dx=∫sin2(x)cos2(x)dx
=∫1-cos2(x)cos2(x)dx∵sin2(x)+cos2(x)=1⇒sin2(x)=1-cos2(x)
=∫1cos2(x)-cos2(x)cos2(x)dx
=∫sec2(x)-1dx∵1cos2(x)=sec2(x)
=∫sec2(x)dx-∫1dx
=tan(x)-x+C∵∫sec2(x)dx=tan(x),∫1dx=x
Hence, the antiderivative of tan2(x)dx is tan(x)-x+C, where C is constant of integration.