1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Area between Two Curves
Find the area...
Question
Find the area bonded by the curves
x
2
+
y
2
=
25
,
4
y
=
|
4
−
x
2
|
and
x
=
0
above the X-axis.
Open in App
Solution
Given curves are
x
2
+
y
2
=
25
4
y
=
|
4
−
x
2
|
x
=
0
and above x-axis
Solving (1) and (2), we get
4
y
+
4
+
y
2
=
25
⇒
(
y
+
2
)
2
=
5
2
⇒
y
=
3
,
−
7
y
=
−
7
is rejected,
y
=
3
gives the points above x-axis.
When
y
=
3
,
x
=
±
4
Hence, the points of intersection are
P
(
4
,
3
)
and
Q
(
−
4
,
3
)
The required area is
=
2
[
∫
4
0
√
25
−
x
2
d
x
−
1
4
∫
2
0
(
4
−
x
2
)
d
x
−
1
4
∫
4
2
(
x
2
−
4
)
d
x
]
=
2
[
x
2
√
25
−
x
2
+
25
2
sin
−
1
x
5
)
4
0
−
1
4
(
4
x
−
x
3
3
)
2
0
−
1
4
(
x
3
3
−
4
x
)
4
2
=
2
[
6
+
25
2
sin
−
1
4
5
]
−
1
4
[
8
−
8
3
]
−
1
4
[
(
64
3
−
16
)
−
(
8
3
−
8
)
]
=
4
+
25
sin
−
1
4
5
s
q
.
u
n
i
t
s
Suggest Corrections
0
Similar questions
Q.
Find the area bounded by curves
4
y
=
∣
∣
4
−
x
2
∣
∣
,
x
2
+
y
2
=
25
,
x
=
0
above the
x
axis.
Q.
Find the area bounded by the curves 4y = | 4 − x
2
|, x
2
+ y
2
= 25 and x = 0 above the x-axis.