We have,
Given the curve is
9x2+16y2=144
9x2+16y2144=1
9x2144+16y2144=1
x216+y29=1
x242+y232=1
Comparing that,
x2a2+y2b2=1
Then,
a=±4,b=±3
Area of ellipse =AreaofABCD
=2×[AreaofABC]
=2×∫4−4ydx
Finding y
We know that,
x216+y29=1
Now area of Ellipse is
=2×∫4−4ydx
=2×∫4−434√16−x2dx
=2×34∫4−4√16−x2dx
=32∫4−4√16−x2dx
=32∫4−4√(4)2−x2dx
y2=916(16−x2)
y=±√916(16−x2)
y=±34√(16−x2)
=32∫4−4√42−x2dx
=32[x2√(4)2−x2+(4)22sin−1x4]−44
=32[42√(4)2−(4)2−(−4)2√(4)2−(−4)2+162sin−1(44)−162sin−1(−44)]
=32[2×0+2×0+8sin−1(1)−8sin−1(−1)]
=32[8sin−1(1)+8sin−1(1)]
=32×16sin−1(1)
=32×16×π2
=12π
Hence, this is the answer.