Find the cube of x+2y.
x3+8y3+6x2y+12xy2
x3+8y3+6x2y−12xy2
x3+8y3+12x2y+6xy2
x3+8y3−6x2y+12xy2
Cube of x+2y=(x+2y)3
Using identity: (a+b)3=a3+b3+3a2b+3ab2, we get
(x+2y)3=x3+(2y)3+3×x2×2y+3×x×(2y)2
=x3+8y3+6x2y+12xy2
The value of (x+2y)3 is _______.