Let f(x)=x2cosπ4sinx
⇒f(x)=x2√2sinx [∵cosπ4=1√2]
Differentiating with respect to x
⇒f′(x)=ddx(x2√2sinx)
⇒f′(x)=1√2ddx(x2sinx)
⇒f′(x)=1√2⎡⎢
⎢
⎢⎣(sinx)ddx(x2)−(x2)ddx(sinx)sin2x⎤⎥
⎥
⎥⎦
⇒f′(x)=2x(sinx)−(x2)(cosx)√2sin2x
⇒f′(x)=x(2sinx−xcosx)√2sin2x