Let f(x)=(x2+1)cosx Differentiating with respect to x ⇒f′(x)=ddx((x2+1)cosx) ⇒f′(x)=(cosx)ddx(x2+1)+(x2+1)ddx(cosx) ⇒f′(x)=cosx(2x+0)+(x2+1)(−sinx) ⇒f′(x)=2xcosx−sinx(x2+1) ⇒f′(x)=2xcosx−x2sinx−sinx ∴f′(x)=−x2sinx+2xcosx−sinx
Find the derivative of x2+x(sinx) ?