Find the derivative of |x|+a0xn+a1xnā1+a2xnā2+....+anā1x+an
A
x|x|+na0xn−1+(n−1)a1xn−2+(n−2)a2xn−3+....+an−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1+na0xn−1+(n−1)a1xn−2+(n−2)a2xn−3+....+an−1
No worries! Weāve got your back. Try BYJUāS free classes today!
C
x|x|+na0xn−1+(n−1)a1xn−2+(n−2)a2xn−3+....+an
No worries! Weāve got your back. Try BYJUāS free classes today!
D
None of these
No worries! Weāve got your back. Try BYJUāS free classes today!
Open in App
Solution
The correct option is Ax|x|+na0xn−1+(n−1)a1xn−2+(n−2)a2xn−3+....+an−1 We can write |x| as √x2 so, d(√x2)dx=2x2√x2=x|x| and, d(a0xn)dx=na0xn−1 Similarly, d(an−1x)dx=an−1 and d(an)dx=0 Hence, option A is the correct option.