Let f(x)=tan−1x and f(x+∂x)=tan−1(x+∂x)
Now, ddxtan−1x=lim∂x→0tan−1(x+∂x)−tan−1x∂x
Let t=tan−1x⇒tant=x
t+∂t=tan−1(x+∂x)
On putting values
if ∂x→0 and ∂t→0
ddxtan−1x=lim∂x→0t+∂t−ttan(t+∂t)−tant
=lim∂t→0∂tsin(t+∂t)cos(t+∂t)−sintcost
=lim∂t→0∂t(costcos(t+∂t))costsin(t+∂t)−sintcos(t+∂t)
=lim∂t→0∂t[cost.cos(t+∂t)]sin(t+∂t−t)
lim∂t→0(∂tsin(∂t))cost.cos(t+∂t)=(1)costcost
=1sec2t
=11+tan2t=11+x2