Step 1: Simplication
Given: cos3x+cosx−cos2x=0
⇒(cos3x+cosx)−cos2x=0
⇒2cos(3x+x2)cos(3x−x2)−cos2x=0
⇒2cos(4x2)cos(2x2)−cos2x=0
⇒2cos2xcosx−cos2x=0
cos2x=0 or 2cosx−1=0
cos2x=0 or cosx=12
Step 2: General solution for cos2x=0
The general solution is
2x=(2n+1)π2
x=(2n+1)π4 where n∈Z
Step 3: General solution for cosx=12
⇒cosx=cosπ3
We know that general solution for cosx=cosy is x=2nπ±y,n∈Z
Put y=π3
x=2nπ±π3, where n∈Z