The correct option is A (a2+3a+1)
a3+4a2+4a+1)a4+3a3+2a2+3a+1(a−1 a4+4a3+4a2+a+ − − − −––––––––––––––––––––––– −a3−2a2+2a+1 −a3−4a2−4a−1 + + + +–––––––––––––––––––––––––– 2a2+6a+2
2a2+6a+2=2(a2+3a+1)
a2+3a+1)a3+4a2+4a+1(a−1 a3+3a2+a − − − ––––––––––––––––––––– a2+3a+1 a2+3a+1 − − − ––––––––––––––––––––– 0
So, H.C.F. of (a3+4a2+4a+1) and (a4+3a3+2a2+3a+1) is (a2+3a+1).