Consider the given integral.
I=∫cos2xcos4xdx
We know that
cosAcosB=12[cos(A+B)+cos(A−B)]
Therefore,
I=12∫[cos(2x+4x)+cos(2x−4x)]dx
I=12∫[cos6x+cos(−2x)]dx
I=12∫[cos6x+cos2x]dx
I=12[sin6x6+sin2x2]+C
I=sin6x12+sin2x4+C
Hence, this is the answer.