wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function
cosx1+cosx

Open in App
Solution

We have,


I=cosx1+cosxdx



We know that


cosx=2cos2x21=cos2x2sin2x2



Therefore,


I=cos2x2sin2x21+2cos2x21dx


I=12cos2x2sin2x2cos2x2dx


I=12cos2x2cos2x2dx12sin2x2cos2x2dx


I=121dx12tan2x2dx


I=121dx12(sec2x21)dx


I=x212⎢ ⎢ ⎢tanx212x⎥ ⎥ ⎥+C


I=x2tanx2+x+C


I=3x2tanx2+C



Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon