wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function sin1(cosx)

Open in App
Solution

Let cosx=t
Then, sinx=1t2
(sinx)dx=dt
dx=dtsinx
dx=dt1t2
sin1(cosx)dx=sin1t(dt1t2)
=sin1t1t2dt
Let sin1t=u
11t2dt=du
sin1(cosx)dx=4du
=u22+C
=(sin1t)22+C
=[sin1(cosx)]22+C .......(1)
It is known that,
sin1x+cos1x=π2
sin1(cosx)=π2cos1cosx=(π2x)
Substituting in equation (1), we obtain
sin1(cosx)dx=[π2x]22+C
=12(π22+x2πx)+C
=π28x22+12πx+C
=πx2x22+(Cπ28)
=πx2x22+C1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon