Let cosx=t
Then, sinx=√1−t2
⇒(−sinx)dx=dt
⇒dx=−dtsinx
⇒dx=−dt√1−t2
∴∫sin−1(cosx)dx=∫sin−1t(−dt√1−t2)
=−∫sin−1t√1−t2dt
Let sin−1t=u
⇒1√1−t2dt=du
∴∫sin−1(cosx)dx=∫4du
=−u22+C
=−(sin1t)22+C
=−[sin−1(cosx)]22+C .......(1)
It is known that,
sin−1x+cos−1x=π2
∴sin−1(cosx)=π2−cos−1cosx=(π2−x)
Substituting in equation (1), we obtain
∫sin−1(cosx)dx=−[π2−x]22+C
=−12(π22+x2−πx)+C
=−π28−x22+12πx+C
=πx2−x22+(C−π28)
=πx2−x22+C1