Consider the given integral.
I=∫sin4xdx
I=∫(sin2x)2dx
We know that
cos2x=1−2sin2x
sin2x=12(1−cos2x)
Therefore,
I=∫(12(1−cos2x))2dx
I=14∫(1+cos22x−2cos2x)dx
We know that
cos2(2x)=2cos22x−1
cos22x=12(1+cos2(2x))
Therefore,
I=14∫(1+12(1+cos2(2x))−2cos2x)dx
I=14[∫32dx+12∫cos4xdx−2∫cos2xdx]
I=14[3x2+12(sin4x4)−2(sin2x2)]+C
I=3x8+sin4x32−sin2x4+C
Hence, this is the answer.