wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integral of the function
sin4x

Open in App
Solution

Consider the given integral.

I=sin4xdx

I=(sin2x)2dx

We know that

cos2x=12sin2x

sin2x=12(1cos2x)

Therefore,

I=(12(1cos2x))2dx

I=14(1+cos22x2cos2x)dx

We know that

cos2(2x)=2cos22x1

cos22x=12(1+cos2(2x))

Therefore,

I=14(1+12(1+cos2(2x))2cos2x)dx

I=14[32dx+12cos4xdx2cos2xdx]

I=14[3x2+12(sin4x4)2(sin2x2)]+C

I=3x8+sin4x32sin2x4+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon