Given,
⇒cos42x
Others trigonometry ratios relation are below
(cos22x)2=(cos2x+12)2=(1−cos2x2)2
We know that,
∵cos2A=2cos2A−1=1−2sin2A=1−tan2A1+tan2A
Therefore,
cos42x=(cos2x)4=(1−tan2x1+tan2x)4
cos42x=(cos2x)4=(1secx)4
cos42x=(cos2x)4=(1secx)4=(1sec2x)2
=(11+tan2x)2=⎛⎜ ⎜ ⎜⎝11+1cot2x⎞⎟ ⎟ ⎟⎠2=(cot2xcot2x+1)2
cos42x=(cot2xcot2x+1)2=(cosec2x−1cosec2x)2