wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the function :
cos42x

Open in App
Solution

Given,

cos42x

Others trigonometry ratios relation are below

(cos22x)2=(cos2x+12)2=(1cos2x2)2

We know that,

cos2A=2cos2A1=12sin2A=1tan2A1+tan2A

Therefore,

cos42x=(cos2x)4=(1tan2x1+tan2x)4

cos42x=(cos2x)4=(1secx)4

cos42x=(cos2x)4=(1secx)4=(1sec2x)2

=(11+tan2x)2=⎜ ⎜ ⎜11+1cot2x⎟ ⎟ ⎟2=(cot2xcot2x+1)2

cos42x=(cot2xcot2x+1)2=(cosec2x1cosec2x)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon