sin4x=sin2xsin2x
=(1−cos2x2)(1−cos2x2)
=14(1−cos2x)2
=14[1+cos22x−2cos2x]
=14[1+(1+cos4x2)−2cos2x]
=14[1+12+12cos4x−2cos2x]
=14[32+12cos4x−2cos2x]
∴∫sin4xdx=14∫[32+12cos4x−2cos2x]dx
=14[32x+12(sin4x4)−2sin2x2]+C
=18[3x+sin4x4−2sin2x]+C
=3x8−14sin2x+132sin4x+C