wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions sin4x

Open in App
Solution

sin4x=sin2xsin2x
=(1cos2x2)(1cos2x2)
=14(1cos2x)2
=14[1+cos22x2cos2x]
=14[1+(1+cos4x2)2cos2x]
=14[1+12+12cos4x2cos2x]
=14[32+12cos4x2cos2x]
sin4xdx=14[32+12cos4x2cos2x]dx
=14[32x+12(sin4x4)2sin2x2]+C
=18[3x+sin4x42sin2x]+C
=3x814sin2x+132sin4x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon