We know that LCM is the least common multiple.
Factorise 4x3+4x2−x−1 as follows:
4x3+4x2−x−1=4x2(x+1)−1(x+1)=(4x2−1)(x+1)=[(2x)2−12](x+1)=(2x+1)(2x−1)(x+1) (using identity a2−b2=(a+b)(a−b))
Now, factorise 8x3−1 as follows:
8x3−1=(2x)3−13=(2x−1)[(2x)2+1+2x]=(2x−1)(4x2+1+2x)
(using identity a3−b3=(a−b)(a2+b2+ab))
Finally, factorise 8x2−2x−1 as follows:
8x2−2x−1=8x2−4x+2x−1=4x(2x−1)+1(2x−1)=(4x+1)(2x−1)
Therefore, the least common multiple between the polynomials 4x3+4x2−x−1, 8x3−1and 8x2−2x−1 is:
LCM=(2x+1)×(2x−1)×(x+1)×(4x2+1+2x)×(4x+1)
=(x+1)(2x+1)(4x+1)[(2x−1)(4x2+1+2x)]
=(x+1)(2x+1)(4x+1)(8x3−1) (using identity a3−b3=(a−b)(a2+b2+ab))
Hence, the LCM is(x+1)(2x+1)(4x+1)(8x3−1).