Find the limit: limx→0sinxx.
Compute the required limit:
For x<0,x=-x
⇒limx→0-sinxx⇒limx→0-sin-xx⇒limx→0--sinxx⇒-1 {Since, sin(-x)=-sin(x) and limx→0sinxx=1}
For x>0,x=x
⇒limx→0+sinxx⇒limx→0-sinxx⇒1
Since, the two limits from the left and from the right are different.
Therefore the above limit does not exist.
Find the area bounded by the curve y=xx,x-axis and the ordinates x=1,x=-1.