The function f(x)=2x2+3x−5 is a quadratic function with a=2 and b=3.
Thus, the maximum or minimum value occurs at:
x=−b2a=−32(2)=−34
Since a>0, the function has the minimum value and that is:
f(−34)=2(−34)2+3(−34)−5=2(916)−94−5=98−94−5=9−18−408=−498.
Hence, the minimum value of the given function is −498.