The correct option is B n(n+3)2n−3
∑o≤i<∑j≤njnCi
=n−1∑r=0 nCr[(r+1)+(r+2)+...+(n)]
=n−1∑r=0 nCr[(r+1)+(r+2)+...+(n)]
=n∑r=0 nCr(n+12(n−r)−r(n−r)2)
=n+12n∑r=0(n−r) nCr−n2
∑nr=0rnCr+12∑nr=0r2
=n+12n∑r=0r nCr−n2n∑r=0r nCr+12n∑r=0r2 nCr
=12(n∑r=0r nCr+n∑r=0r2 nCr)
=12(n2n−1+n(n−1)2n−2+n2n−1)
=n(n+3)2n−3