Find the sum of 1.n2+2(n−1)2+3(n−2)2+......n.12
Given series is 1.n2+2(n−1)2+3(n−2)2+......n.12
General term of the series can be written as
r(n−r+1)2
Sum of the series is ∑nr=1r.(n−r+1)2
=∑nr=1r.((n+1)2−r)2
=∑nr=1r.((n+1)2+r2−2r(n+1))
=(n+1)2∑nr=1r+∑nr=1r3−2(n+1)∑nr=1r2
=(n+1)2.n(n+1)2+n2(n+1)24−2(n+1)n(n+1)(2n+1)6
=n(n+1)22[n+1+n2−2(2n+1)3]
=n(n+1)22[(3n+2)2−2(2n+1)3]
=n(n+1)22[9n+6−8n−46]
=n2(n+1)2[n+26]
=n12(n+1)2(n+2)