Find the sum of n terms of the series Sn=1∗2+3∗22+5∗23+9∗24+.......
Sn=1∗2+3∗22+5∗23+9∗24+.......
=2+(2+1)22+(22+1)23+(23+1)24+........
=(2+23+25+27+.....+22n−1)+(21+22+23+24+25+............+2n)−2
=2(22n−1)/(22−1)+2(2n−1)/(2−1)−2
=2(22n−1)/3+2n+1–2−2
=(22n+1−2+3∗2n+1−12)3=(22n+1+3∗2n+1−14)3