Find the sum of odd interges from 1 to 2001 ,
All odd intergers from 1 to 1000 are 1, 3, 5, 7, ........... 2001,
Here a = 1, d = 3 - 1 = 2, an = 2001.
We have that an=a+(n−1)d
∴ 2001 = 1+(n−1)×2
⇒2001−1=(n−1)×2⇒20002=n−1
⇒n=1000+1=1001
Now, sn=n2[a+1]
∴s1001=10012[1+2001]=10012×2002
= 1002001[∴l=an=2001]