n!=1×2…n
(n+1)n!=1×2…n×(n+1)=(n+1)! (P)
------------------------------------------------------------------------
S=n∑k=1(k2+1)k!
=n∑k=1(k2+2k+1−2k)k!
=n∑k=1((k+1)2−2k)k!
=n∑k=1(k+1)2k!−2k⋅k!
=n∑k=1(k+1)⋅(k+1)!−2k⋅k! (using (P))
=n∑k=1[(k+1)⋅(k+1)!−k⋅k!]−n∑k=1k⋅k!
=(n+1)(n+1)!−1⋅1!−n∑k=1(k+1−1)k!
=(n+1)(n+1)!−1−[n∑k=1(k+1)k!−k!]
=(n+1)(n+1)!−1−[n∑k=1(k+1)!−k!] (using (P))
=(n+1)(n+1)!−1−[(n+1)!−1!]
=(n+1)(n+1)!−(n+1)!
=n(n+1)!