The correct option is A
581[10n+1−10−9n]
5+55+555+...to n terms=5(1+11+111+..to n terms)=59(9+99+999+...to n terms)=59[(10−1)+(100−1)+(1000−1)+...to n terms]=59[(10+100+1000+...to n tems)−n)]=59[10(10n−1)10−1−n]=59[10n+1−109−n]=59[10n+1−10−9n9]=58110n+1−10−9n)
So, option a is correct.