12−22+32−42+52−62+....n terms
Case 1 : Let n be an even integer 2m
Then
12−22+32−42+52−62+....upto 2m terms
=(12−22)+(32−42)+(52−62)+.... upto m terms
=(1−2)(1+2)+(3−4)(3+4)+(5−6)(5+6)+....m terms
=−3−7−11−....upto m terms
=−(3+7+11+...uptomterms)
=m2[2×3+(m−1)4]
=−m(2m+1) .........Equation no. (1)
=−n2(n+1)(∵n=2m)
Thus, if n is an even integer then the sum of the given series upto n terms=−n2(n+1)
Case 2: let n be an odd integer = 2m+1
Then,
=12−22+32−42+52−62+.... to (2m
1) terms
=(12−22)+(32−42)+(52−62)+.... to m terms+(2m+1)2
=−m(2m+1)+(2m+1)2[UsingEquation(1)]
=(2m+1)+(m+1)
=n(n−12+1)(∵n=2m+1andm=n−12)
=n(n+1)2
Hence if n is an odd integer then the sum of the series upto n terms =n(n+1)2