Find the value of 1+cosθ
Solve the given trigonometric expression
Given, 1+cosθ
We know that, cos(2θ)=cos2θ-sin2θ.
On substituting θ by θ2 in the above equation, we get,
cos2×θ2=cos2θ2-sin2θ2⇒cosθ=cos2θ2-sin2θ2⇒1+cosθ=1+cos2θ2-sin2θ2⇒1+cosθ=2cos2θ2[∵1-sin2θ=cos2θ]
Hence, the value of 1+cosθ is 2cos2(θ2)