The correct option is A a=14
We have f(x)=ax2−bx+c
and given f(0)=2⇒c=2 (i)
f(1)=1⇒a−b+c=1 (ii)
and f′(5/2)=0⇒2a(5/2)−b=0⇒5a−b=0
So by (i), (ii) and (ii)
Δ=∣∣
∣∣0011−115−10∣∣
∣∣=4
Δa=∣∣
∣∣2011−110−10∣∣
∣∣=1
Δb=∣∣
∣∣021111500∣∣
∣∣=5
Δc=∣∣
∣∣0021−115−10∣∣
∣∣=8
Hence by cramers rule a=ΔaΔ=14,b=ΔbΔ=54,c=ΔcΔ=2
And thus f(x)=14(x2−5x+8)