Find the value of a+b
if 5+3√23+2√2=a+b√2
1
Given 5+3√23+2√2=a+b√2
We will have to rationalize 5+3√23+2√2.
Rationalizing factor is 3−2√2.
So, multiplying and dividing the expression by 3−2√2, we get,
5+3√23+2√2×3−2√23−2√2
=(5+3√2)×(3−2√2)(3+2√2)×(3−2√2)
=15−10√2+9√2−1232−(2√2)2
=3−√21
⇒3−2√2=a+b√2
⇒a=3, b=−2
⇒a+b=3−2=1