Find the value of cos18∘
Find the value of cos18° using multiple angle formulae of trigonometric ratios
Let angle A=18°
Therefore, 5A=90°
⇒2A+3A=90˚
⇒ 2A=90˚-3A
Taking sine on both sides, we get sin2A=sin(90˚-3A)=cos3A
⇒ 2sinA×cosA=4cos3A-3cosA
⇒2sinA×cosA-4cos3A+3cosA=0
⇒ cosA(2sinA-4cos2A+3)=0
Dividing both sides bycosA=cos18˚≠0, we get
2sinA-4(1-sin2A)+3=0
⇒4sin2A+2sinA-1=0, which is a quadratic equation in sinA
⇒sinA=-2±22-44-124
=-2±16+48=-2±258
⇒sinA=-1±54
Now the value of cos18∘ is
⇒cos18∘=1-sin218∘
=1-5-142=1-5+1-2516=10+2516
⇒cos18∘=10+254
Hence the value of cos18∘=10+254