Find the value of ∑nr=0rnCr
nCr=nr×n−1Cr−1 ⇒r.nCr=n×n−1Cr−1 ⇒∑nr=0rnCr=∑nr=1nn−1Cr−1(∵0.nC0=0) =n∑nr=1n−1Cr−1 =(n−1C0+n−1C1+n−1C1+n−1C2.....n−1Cn−1) =n.2n−1
Find the value of nC1+2nC2+3nC3.........nnCn