Find the value of ∑10r=1rnCrnCr−1
10n-45
10n
9n-45
9n
nCrnCr−1=n!(n−r)!×r!(r−1)!×(n−r+1)!n! =n−r+1r ⇒∑10r=1rnCrnCr−1=∑10r=1(n−r+1) =∑10r=1(n+1)−∑10r=1r =10(n+1)−10×112 =10(n+1)-55 =10n-45
Q. resultant of which of the following may be equal to zero
a) 10N ,10N, 10N
b)10N,10N,25N
c)10N,10N,35N
Find the value of ∑n−1r=0nCrnCr+nCr+1 when n=100